Study Guide

LONGITUDINAL & CORRELATED DATA (LCD)

Semester 1, 2015

Prepared by:

Andrew Forbes
Department of Epidemiology and Preventive Medicine,
Monash University

John Carlin
School of Population Health, University of Melbourne, and
Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s
Research Institute

Copyright © Department of Epidemiology and Preventive Medicine,
Monash University, and
Centre for MEGA Epidemiology, School of Population Health,
University of Melbourne
LONGITUDINAL & CORRELATED DATA (LCD)
Semester 1, 2015

Instructor contact details

<table>
<thead>
<tr>
<th>John Carlin</th>
<th>Andrew Forbes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melbourne School of Population & Global Health, University of Melbourne, and Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute</td>
<td>Department of Epidemiology and Preventive Medicine, Monash University Alfred Hospital</td>
</tr>
<tr>
<td>Tel: (03) 9345 6363 (03) 8344 0733 (Tues)</td>
<td>Tel: (03) 9903 0580</td>
</tr>
<tr>
<td>Email: john.carlin@unimelb.edu.au</td>
<td>Email: Andrew.Forbes@monash.edu</td>
</tr>
</tbody>
</table>

Background
Longitudinal and correlated data arise in many settings in health and medical research. Common examples include cohort studies and clinical trials involving repeated measurements of individuals, and cluster-randomised trials where participants are clustered within natural units such as schools or medical practices. The common characteristic of these data structures is that of correlated measurements either within an individual or within a cluster of individuals. Standard methods of statistical analysis assume independent observations and therefore do not accommodate this correlation, and more sophisticated methods need to be considered. There have been significant developments in these methods and their availability in statistical software packages in recent decades.

Unit summary
This subject covers statistical models for longitudinal and correlated data in medical research. The concept of hierarchical data structures is developed, together with simple numerical and analytical demonstrations of the inadequacy of standard statistical methods. Beginning with models based on normal distributions, appropriate statistical methods involving generalised estimating equations and mixed linear models are developed and explored using the SAS and Stata statistical software packages. The limitations of traditional repeated measures analysis of variance are briefly discussed. Extensions to non-normal outcomes are developed, and using a set of case studies, approaches based on generalised estimating equations (GEE) and generalised linear mixed models (GLMM) are developed and contrasted. Throughout, emphasis is placed on interpretation issues focussing on the underlying clinical or public health research question.
Objectives

At the completion of this unit students should be able to:

1. Recognise the existence of correlated or hierarchical data structures, and describe the limitations of standard methods in these settings.
2. Develop and analytically describe appropriate models for longitudinal and correlated data based on subject matter considerations.
3. Be proficient at using statistical software packages (Stata and/or SAS) to fit models and perform computations for longitudinal data analyses, and to correctly interpret results.
4. Express the results of statistical analyses of longitudinal data in language suitable for communication to medical investigators or publication in biomedical or epidemiological journal articles.

Method of delivery and communication

Two instructors (Andrew Forbes, John Carlin) were jointly responsible for the development of the material for this subject/unit, and typically alternate taking the role of coordinating the unit. This semester John Carlin will be taking primary responsibility as unit coordinator although Andrew may make an occasional appearance. We expect also to have assistance on the course from a biostatistics post-doc; details to follow.

Questions about administrative aspects or course content can be emailed to the coordinator, and when doing so please use “LCD:” in the Subject line of your email to assist in keeping track of our email messages. John will be available to answer questions related to the module notes and practical exercises, and to address any other issues that require clarification. However, please note that instructors are not necessarily available every day of the week and you should expect that it may take a day or so to respond to questions (possibly longer over weekends and during breaks!).

We strongly recommend that you post content-related questions to the Discussion board in the LCD area of the BCA’s Blackboard eLearning site. You should be familiar with the Blackboard system from previous BCA units, and will receive any specific instructions on using the BCA course sites this semester from the BCA Coordinating Office. There is also a “Getting Started” document available on the Student Resources page of the BCA’s own website.

Relying on Blackboard for content-related communication and problem-solving will enable other students to benefit from responses and indeed to respond themselves, and we try to encourage as much interaction as possible within the class through this medium. We will also use Blackboard for posting course materials although all of the core material (notes and readings) is also sent out in paper form.

Unit content

The unit is divided into 6 modules, summarised in more detail below. Each module will involve approximately 2 weeks of study and generally includes the following material:
1. Module notes describing concepts and methods, and including some exercises of a more “theoretical” nature.

2. Selected readings from published articles or textbooks.

3. One or more extended examples illustrating the concepts/methods introduced in the notes and including more practically oriented exercises.

Students should work through each module systematically, following the module notes and any readings referred to, and working through the accompanying exercises. You will learn a lot more efficiently if you tackle the exercises systematically as you work through the notes. You are encouraged to post any content-related questions to Blackboard, whether they relate directly to a given exercise, or are a request for clarification or further explanation of an area in the notes. You should also work through all of the computational examples in the notes for yourself on your own computer.

Outline solutions to the exercises in each module (except those to be submitted for assessment, as described below) will be posted online at the midway point of the allocated time period for the module. This is intended to encourage you to attack the exercises independently (or via the Blackboard site), and yet not make you wait too long to see the sketch solutions.

Assessment

Assessment will include two written assignments worth 30% each, to be made available in the middle and at the end of the semester, and to be completed within approximately two weeks. In addition, students will be required to submit solutions to selected practical exercises (one from each module except Module 6), worth a total of 40%, by deadlines specified throughout the semester (see below).

Please note that the instructors will not answer questions online relating directly to the assessable material until after it has been submitted. However, with respect to the five module-based assessments, we encourage students to discuss any related material between themselves, via Blackboard, as long as explicit solutions to the exercises are not posted for others to use, and each student’s submitted work is clearly their own, with anything derived from other students’ discussion contributions clearly attributed to the source. Note that in contrast, the two major assignments require completely independent work by students, as per the BCA Assignment Cover Sheet.

You should submit material for assessment using the Assignments tool in Blackboard. Where the work involves algebraic derivations that you find easier to complete by hand then you should scan your work to electronic form for submission. In general, we prefer that your work be typed in Word or similar (and we recommend the use of Microsoft’s Equation Editor for algebraic work). See the separate BCA document for specific guidelines on acceptable standards for assessable work.

Please submit your assessment items on or before the due date. If you need an extension of time, for a legitimate reason such as a health problem, contact the coordinator, preferably well before the due date.
Late penalties: Where no extension has been granted, the mark obtained will be penalised by 5% of the total that you would have received per day late, up to a maximum of 50%, according to standard BCA policies.

In addition, please pay careful attention to the following documents that are available on the BCA website: BCA Assessment Policies and Procedures (including Universities’ Plagiarism Policies), and the Assignment Cover Sheet.

Reference Books

There is no single prescribed text for the subject, but a number of reference books are recommended as background material (list below). The first book in the list is the one that we find closest to our approach in LCD (although it appeared after the first draft of the course was written), so if you were to obtain one book this would be our recommendation. The module notes and case studies form the primary material for this subject. Required readings from selected texts are provided in a mail-out package. (Note: We no longer automatically mail out printed copies of the course notes, but please let us know if you would like us to send a printed copy.)

Software

For this subject you will need to have access to, and a working familiarity with either Stata or SAS and preferably both. Some of the course was originally developed with a dependence on SAS but the difficulties some students face in getting access to SAS, as well as the greater ease of use of Stata (and its much improved capacity for fitting mixed models), mean that SAS will not be an absolute requirement this year.

Stata 11 was released in July 2009 and Stata 12 in mid-2011 (with Stata 13 coming mid-2013), and we assume you are using at least version 11, as some of the course material relies on features that were not available in earlier releases of Stata. A minor change between version 11 and 12 will be noted in Module 4. Importantly, whichever version you are using, please ensure that you have performed the online update to the latest release of that version. (Use the command update query.)

For SAS, the notes assume you have version 9.3 or later, although slightly earlier versions should not have any important differences.
Timetable for modules of study and assessment tasks

Below (over the page) is an outline of the study modules and assessment tasks for this unit together with a timetable.

Study materials for all Modules are contained in your mail-out package. Supplementary material, such as datasets, and Assignments, will be posted on Blackboard. We will also post the lecture notes on Blackboard, but please note that we are not able to post copies of copyright material (journal articles and book extracts)—for these you will have to rely on the hard copy mail-out or on your home university’s library resources.

It is intended that students will work through the material for each module, including completion of practice exercises, by the end-date of the module. As stated above, we encourage online discussion of topics and exercises, which makes it important to work at a consistent pace with the rest of the class, as far as possible.

We have scheduled each module to begin on a Monday and conclude on the Sunday of the following week. The due date for submission of the required exercises from each module is midnight on the day immediately following the completion of the module, as indicated below.
Module 1: Introduction to correlated data using paired data and simple clustered data.

Mon 2 March – Sun 15 March

- Paired data: the simplest correlated data structure
- Advantage of modelling approach e.g. with missing data, to enable use of both within- and between-subject information where possible, leading to simple random effects model.
- Extension to exchangeable clustered data with varying numbers of individuals per cluster, and consideration of between-cluster effects
- Introduction to generalised estimating equations (GEE)

Module 1 exercise: Due midnight Monday 16 March

Module 2: Overview of different correlated and longitudinal data structures and related research questions

Mon 16 March – Sun 29 March

- Examples of two major types of problem: cluster-randomised trials and repeated-measures longitudinal studies.
- Simple approaches to analysis: graphical display (trajectory plots, pairwise correlations), and summary measures approach to analysis
- Cluster-randomised trials: design effect and simple approaches to analysis.

Module 2 exercise: Due midnight Monday 30 March

Module 3: Methods for continuous outcome measures based on generalised estimating equations (GEE)

Mon 30 March – Sun 19 April

- The marginal model approach to handling correlation within clusters or individuals (by generalising the standard regression model to allow correlated error terms)
- Robust (information-sandwich) standard errors.
- Random effects specifications, i.e. conditional/ multilevel/ hierarchical structure and relationship to marginally specified models

Module 3 exercise: Due midnight Monday 20 April

Note that one extra week is allowed for this module, to include the Easter break:
Fri 3 April – Sun 12 April

Assignment 1 due: midnight Monday 27 April
Note that the assignment will be released two weeks before due date.
Module 4: Methods for continuous outcome measures based on normal mixed models, with likelihood-based estimation.

Mon 27 April – Sun 10 May

- Alternative approaches to estimation: weighted/generalised least squares, maximum likelihood and REML.
- Separating between- and within-individual (or group) effects
- Classical repeated measures ANOVA and relationship to modern modelling approaches.
- Missing data: importance of assumptions about mechanism for missingness, and implications for GEE and likelihood-based estimation.

Module 4 exercise: Due midnight Monday 11 May

Module 5: Methods for discrete data: GEE and generalized linear mixed models (GLMM)

Mon 11 May – Sun 24 May

- Binary outcomes and logistic regression models: generalising to correlated data. Methods focussing on the marginal mean structure: estimating equations in general and GEE. Linear marginal model no longer corresponds to a linear conditional model.
- Methods using a full (multilevel) model specification.
- Advantages and disadvantages of each approach, in particular interpretation of “subject-specific” and “population-average” parameters.

Module 5 exercise: Due midnight Monday 25 May

Module 6: Methods for count data; transitional models

Mon 25 May – Sun 7 June

- Poisson regression model, using GEE and GLMM approaches.
- Negative-binomial model.
- Transitional or Markov models: application to modelling change or incidence.

No Module 6 exercise is required for submission.

Assignment 2 due: midnight, Monday 15 June